Graphic of Technology

Major Technical Accomplishments (since start of contract)

Demonstration of ion implantation with low sheet resistance (14 Ω /square) and subsequent MBE regrowth of device grade HBT material on large area substrate.

Major Work Remaining to Completion of Contract

Demonstration of low parasitic HBT and static divider at 150 GHz.

Goals, Objectives and Main Technical Approach

Demonstrate 250 nm Emitter Transistors $f_t = 350 \text{ GHz}$, $f_{max} = 400 \text{ GHz}$ (Phase IA) 150 GHz Static Flip-flop (Phase IA) 30 mW power per flip-flop at speed 20,000 HBT Integration level (Phase II) Minimize access resistances and parallel capacitance to an optimized intrinsic InP HBT transistor.

Major Impact of Technology & Technology Transition Plan

3x clock rate, 10x power reduction and 10x integration level for high performance integrated circuits to enable advanced DoD system concepts.

Direct digital synthesis of X-band signals using conventional DDS architecture. Ability to realize digital synthesis of 40 GHz signals and above using $\Delta\Sigma$ architecture. (5x the current DDS)